3.20.69 \(\int \frac {d+e x}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [1969]

Optimal. Leaf size=118 \[ -\frac {2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {8 e \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-2/3*(e*x+d)/(-a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+8/3*e*(2*c*d*e*x+a*e^2+c*d^2)/(-a*e^2+c*d^
2)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {652, 627} \begin {gather*} \frac {8 e \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x))/(3*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (8*e*(c*d^2 + a*e^2 + 2*c*d
*e*x))/(3*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 627

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x
+ c*x^2])), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 652

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)/((p + 1)*(b^2 - 4*a*c)))*(a + b*x + c*x^2)^(p + 1), x] - Dist[(2*p + 3)*((2*c*d - b*e)/((p + 1)*(b^2 -
 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rubi steps

\begin {align*} \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac {2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {(4 e) \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 \left (c d^2-a e^2\right )}\\ &=-\frac {2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {8 e \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 90, normalized size = 0.76 \begin {gather*} \frac {2 (d+e x) \left (3 a^2 e^4+6 a c d e^2 (d+2 e x)+c^2 d^2 \left (-d^2+4 d e x+8 e^2 x^2\right )\right )}{3 \left (c d^2-a e^2\right )^3 ((a e+c d x) (d+e x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(2*(d + e*x)*(3*a^2*e^4 + 6*a*c*d*e^2*(d + 2*e*x) + c^2*d^2*(-d^2 + 4*d*e*x + 8*e^2*x^2)))/(3*(c*d^2 - a*e^2)^
3*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(370\) vs. \(2(110)=220\).
time = 0.65, size = 371, normalized size = 3.14

method result size
gosper \(-\frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{2} \left (8 e^{2} x^{2} c^{2} d^{2}+12 a c d \,e^{3} x +4 c^{2} d^{3} e x +3 a^{2} e^{4}+6 a c \,d^{2} e^{2}-c^{2} d^{4}\right )}{3 \left (e^{6} a^{3}-3 e^{4} d^{2} a^{2} c +3 d^{4} e^{2} c^{2} a -d^{6} c^{3}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}\) \(146\)
trager \(-\frac {2 \left (8 e^{2} x^{2} c^{2} d^{2}+12 a c d \,e^{3} x +4 c^{2} d^{3} e x +3 a^{2} e^{4}+6 a c \,d^{2} e^{2}-c^{2} d^{4}\right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \left (c d x +a e \right )^{2} \left (e^{2} a -c \,d^{2}\right ) \left (e x +d \right )}\) \(147\)
default \(e \left (-\frac {1}{3 c d e \left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (\frac {\frac {4}{3} c d e x +\frac {2}{3} e^{2} a +\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}+\frac {16 c d e \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{2 c d e}\right )+d \left (\frac {\frac {4}{3} c d e x +\frac {2}{3} e^{2} a +\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}+\frac {16 c d e \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )\) \(371\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

e*(-1/3/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)-1/2*(a*e^2+c*d^2)/c/d/e*(2/3*(2*c*d*e*x+a*e^2+c*d^2)/(4*
a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+16/3*c*d*e/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2
)^2*(2*c*d*e*x+a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)))+d*(2/3*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^
2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+16/3*c*d*e/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)^2*(2
*c*d*e*x+a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e^2*a>0)', see `assume?
` for more d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (112) = 224\).
time = 7.89, size = 320, normalized size = 2.71 \begin {gather*} \frac {2 \, {\left (4 \, c^{2} d^{3} x e - c^{2} d^{4} + 12 \, a c d x e^{3} + 3 \, a^{2} e^{4} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{3 \, {\left (c^{5} d^{9} x^{2} - a^{5} x e^{9} - {\left (2 \, a^{4} c d x^{2} + a^{5} d\right )} e^{8} - {\left (a^{3} c^{2} d^{2} x^{3} - a^{4} c d^{2} x\right )} e^{7} + {\left (5 \, a^{3} c^{2} d^{3} x^{2} + 3 \, a^{4} c d^{3}\right )} e^{6} + 3 \, {\left (a^{2} c^{3} d^{4} x^{3} + a^{3} c^{2} d^{4} x\right )} e^{5} - 3 \, {\left (a^{2} c^{3} d^{5} x^{2} + a^{3} c^{2} d^{5}\right )} e^{4} - {\left (3 \, a c^{4} d^{6} x^{3} + 5 \, a^{2} c^{3} d^{6} x\right )} e^{3} - {\left (a c^{4} d^{7} x^{2} - a^{2} c^{3} d^{7}\right )} e^{2} + {\left (c^{5} d^{8} x^{3} + 2 \, a c^{4} d^{8} x\right )} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

2/3*(4*c^2*d^3*x*e - c^2*d^4 + 12*a*c*d*x*e^3 + 3*a^2*e^4 + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2)*sqrt(c*d^2*x +
a*x*e^2 + (c*d*x^2 + a*d)*e)/(c^5*d^9*x^2 - a^5*x*e^9 - (2*a^4*c*d*x^2 + a^5*d)*e^8 - (a^3*c^2*d^2*x^3 - a^4*c
*d^2*x)*e^7 + (5*a^3*c^2*d^3*x^2 + 3*a^4*c*d^3)*e^6 + 3*(a^2*c^3*d^4*x^3 + a^3*c^2*d^4*x)*e^5 - 3*(a^2*c^3*d^5
*x^2 + a^3*c^2*d^5)*e^4 - (3*a*c^4*d^6*x^3 + 5*a^2*c^3*d^6*x)*e^3 - (a*c^4*d^7*x^2 - a^2*c^3*d^7)*e^2 + (c^5*d
^8*x^3 + 2*a*c^4*d^8*x)*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Integral((d + e*x)/((d + e*x)*(a*e + c*d*x))**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

integrate((x*e + d)/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(5/2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.14, size = 120, normalized size = 1.02 \begin {gather*} -\frac {2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (3\,a^2\,e^4+6\,a\,c\,d^2\,e^2+12\,a\,c\,d\,e^3\,x-c^2\,d^4+4\,c^2\,d^3\,e\,x+8\,c^2\,d^2\,e^2\,x^2\right )}{3\,{\left (a\,e+c\,d\,x\right )}^2\,{\left (a\,e^2-c\,d^2\right )}^3\,\left (d+e\,x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)

[Out]

-(2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(3*a^2*e^4 - c^2*d^4 + 8*c^2*d^2*e^2*x^2 + 6*a*c*d^2*e^2 + 4
*c^2*d^3*e*x + 12*a*c*d*e^3*x))/(3*(a*e + c*d*x)^2*(a*e^2 - c*d^2)^3*(d + e*x))

________________________________________________________________________________________